skip to main content


Search for: All records

Creators/Authors contains: "Meehl, Gerald A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The subpolar North Atlantic (SPNA) shows contrasting responses in two sensitivity experiments with increased stratospheric aerosols, offering insight into the physical processes that may impact the Atlantic meridional overturning circulation (AMOC) in a warmer climate. In one, the upper ocean becomes warm and salty, but in the other it becomes cold and fresh. The changes are accompanied by diverging AMOC responses. The first experiment strengthens the AMOC, opposing the weakening trend in the reference simulation. The second experiment shows a much smaller impact. Both simulations use the Community Earth System Model with the Whole Atmosphere Community Climate Model component (CESM-WACCM) but differ in model versions and stratospheric aerosol specifications. Despite both experiments using similar approaches to increase stratospheric aerosols to counteract the rising global temperature, the contrasting SPNA and AMOC responses indicate a considerable dependency on model physics, climate states, and model responses to forcings. This study focuses on examining the physical processes involved with the impact of stratospheric aerosols on the SPNA salinity changes and their potential connections with the AMOC and the Arctic. We find that in both cases, increased stratospheric aerosols act to enhance the SPNA upper-ocean salinity by reducing freshwater export from the Arctic, which is closely tied to the Arctic sea ice changes. The impact on AMOC is primarily through the thermal component of the surface buoyancy fluxes, with negligible contributions from the freshwater component. These experiments shed light on the physical processes that dictate the important connections between the SPNA, the Arctic, the AMOC, and their subsequent feedbacks on the climate system.

     
    more » « less
  2. Free, publicly-accessible full text available November 1, 2024
  3. Abstract

    An adequate characterization of internal modes of climate variability (MoV) is a prerequisite for both accurate seasonal predictions and climate change detection and attribution. Assessing the fidelity of climate models in simulating MoV is therefore essential; however, doing so is complicated by the large intrinsic variations in MoV and the limited span of the observational record. Large ensembles (LEs) provide a unique opportunity to assess model fidelity in simulating MoV and quantify intermodel contrasts. In this work, these goals are pursued in four recently produced LEs: the Energy Exascale Earth System Model (E3SM) versions 1 and 2 LEs, and the Community Earth System Model (CESM) versions 1 and 2 LEs. In general, the representation of global coupled modes is found to improve across successive E3SM and CESM versions in conjunction with the fidelity of the base state climate while the patterns of extratropical modes are well simulated across the ensembles. Various persistent shortcomings for all MoV are however identified and discussed. The results both demonstrate the successes of these recent model versions and suggest the potential for continued improvement in the representation of MoV with advances in model physics.

    Significance Statement

    Modes of variability play a critical role in prediction of seasonal to decadal climate variability and detection of forced climate change, but historically many modes have been poorly simulated by coupled climate models. Using recently produced large ensembles, this work demonstrates the improved simulation of a broad range of internal modes in successive versions of the E3SM and CESM and discusses opportunities for further advances.

     
    more » « less
  4. Abstract

    El Niño‐Southern Oscillation (ENSO) can effectively modulate global tropical cyclone (TC) activity, but the role TCs may play in determining ENSO characteristics remains unclear. Here we investigate the impact of TC winds on ENSO using a suite of Earth system model experiments where we insert TC winds, extracted from a TC‐permitting high‐resolution simulation, into a low‐resolution model configuration with nearly no intrinsic TCs. The presence of TC winds in the model increases ENSO power and shifts ENSO frequency closer to what we observe. TCs lead to an increase of strong to extreme El Niño events seen in observations and not simulated in the low‐resolution model without intrinsic TCs, mainly through enhanced zonal advection feedback and thermocline feedback. Our results indicate that TCs play a fundamental role in producing the ENSO characteristics we experience today in the climate system and point to a two‐way climatological interaction between TCs and ENSO.

     
    more » « less
  5. Abstract

    Low-lying island nations like Indonesia are vulnerable to sea level Height EXtremes (HEXs). When compounded by marine heatwaves, HEXs have larger ecological and societal impact. Here we combine observations with model simulations, to investigate the HEXs and Compound Height-Heat Extremes (CHHEXs) along the Indian Ocean coast of Indonesia in recent decades. We find that anthropogenic sea level rise combined with decadal climate variability causes increased occurrence of HEXs during 2010–2017. Both HEXs and CHHEXs are driven by equatorial westerly and longshore northwesterly wind anomalies. For most HEXs, which occur during December-March, downwelling favorable northwest monsoon winds are enhanced but enhanced vertical mixing limits surface warming. For most CHHEXs, wind anomalies associated with a negative Indian Ocean Dipole (IOD) and co-occurring La Niña weaken the southeasterlies and cooling from coastal upwelling during May-June and November-December. Our findings emphasize the important interplay between anthropogenic warming and climate variability in affecting regional extremes.

     
    more » « less
  6. Abstract Understanding the impact of the Indian Ocean Dipole (IOD) on El Niño-Southern Oscillation (ENSO) is important for climate prediction. By analyzing observational data and performing Indian and Pacific Ocean pacemaker experiments using a state-of-the-art climate model, we find that a positive IOD (pIOD) can favor both cold and warm sea surface temperature anomalies (SSTA) in the tropical Pacific, in contrast to the previously identified pIOD-El Niño connection. The diverse impacts of the pIOD on ENSO are related to SSTA in the Seychelles-Chagos thermocline ridge (SCTR; 60°E-85°E and 7°S-15°S) as part of the warm pole of the pIOD. Specifically, a pIOD with SCTR warming can cause warm SSTA in the southeast Indian Ocean, which induces La Niña-like conditions in the tropical Pacific through interbasin interaction processes associated with a recently identified climate phenomenon dubbed the “Warm Pool Dipole”. This study identifies a new pIOD-ENSO relationship and examines the associated mechanisms. 
    more » « less
  7. Abstract

    The effects of differences in climate base state are related to processes associated with the present‐day South Asian monsoon simulations in the Energy Exascale Earth System Model version 2 (E3SMv2) and the Community Earth System Model version 2 (CESM2). Though tropical Pacific and Indian Ocean base state sea surface temperatures (SSTs) are over 1°C cooler in E3SMv2 compared to CESM2, and there is an overall reduction of Indian sector precipitation, the pattern of South Asian monsoon precipitation is similar in the two models. Monsoon‐ENSO teleconnections, dynamically linked by the large‐scale east‐west atmospheric circulation, are reduced in E3SMv2 compared to CESM2. In E3SMv2, this is related to cooler tropical SSTs and ENSO amplitude that is less than half that in CESM2. Comparison to a tropical Pacific pacemaker experiment shows, to a first order, that the base state SSTs and ENSO amplitude contribute roughly equally to lower amplitude monsoon‐ENSO teleconnections in E3SMv2.

     
    more » « less
  8. Abstract

    Extreme precipitation events, including those associated with weather fronts, have wide‐ranging impacts across the world. Here we use a deep learning algorithm to identify weather fronts in high resolution Community Earth System Model (CESM) simulations over the contiguous United States (CONUS), and evaluate the results using observational and reanalysis products. We further compare results between CESM simulations using present‐day and future climate forcing, to study how these features might change with climate change. We find that detected front frequencies in CESM have seasonally varying spatial patterns and responses to climate change and are found to be associated with modeled changes in large scale circulation such as the jet stream. We also associate the detected fronts with precipitation and find that total and extreme frontal precipitation mostly decreases with climate change, with some seasonal and regional differences. Decreases in Northern Hemisphere summer frontal precipitation are largely driven by changes in the frequency of different front types, especially cold and stationary fronts. On the other hand, Northern Hemisphere winter exhibits some regional increases in frontal precipitation that are largely driven by changes in frontal precipitation intensity. While CONUS mean and extreme precipitation generally increase during all seasons in these climate change simulations, the likelihood of frontal extreme precipitation decreases, demonstrating that extreme precipitation has seasonally varying sources and mechanisms that will continue to evolve with climate change.

     
    more » « less
  9. null (Ed.)
  10. null (Ed.)
    Abstract The Southern Hemisphere summertime eddy-driven jet and storm tracks have shifted poleward over the recent few decades. In previous studies, explanations have mainly stressed the influence of external forcing in driving this trend. Here we examine the role of internal tropical SST variability in controlling the austral summer jet’s poleward migration, with a focus on interdecadal time scales. The role of external forcing and internal variability are isolated by using a hierarchy of Community Earth System Model version 1 (CESM1) simulations, including the pre-industrial control, large ensemble, and pacemaker runs. Model simulations suggest that in the early twenty-first century, both external forcing and internal tropical Pacific SST variability are important in driving a positive southern annular mode (SAM) phase and a poleward migration of the eddy-driven jet. Tropical Pacific SST variability, associated with the negative phase of the interdecadal Pacific oscillation (IPO), acts to shift the jet poleward over the southern Indian and southwestern Pacific Oceans and intensify the jet in the southeastern Pacific basin, while external forcing drives a significant poleward jet shift in the South Atlantic basin. In response to both external forcing and decadal Pacific SST variability, the transient eddy momentum flux convergence belt in the middle latitudes experiences a poleward migration due to the enhanced meridional temperature gradient, leading to a zonally symmetric southward migration of the eddy-driven jet. This mechanism distinguishes the influence of the IPO on the midlatitude circulation from the dynamical impact of ENSO, with the latter mainly promoting the subtropical wave-breaking critical latitude poleward and pushing the midlatitude jet to higher latitudes. 
    more » « less